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Functional magnetic resonance imaging (fMRI) of awake and unrestrained dogs ( Canis familiaris ) has been es- 
tablished as a novel opportunity for comparative neuroimaging, promising important insights into the evolu- 
tionary roots of human brain function and cognition. However, data processing and analysis pipelines are often 
derivatives of methodological standards developed for human neuroimaging, which may be problematic due to 
profound neurophysiological and anatomical differences between humans and dogs. Here, we explore whether 
dog fMRI studies would benefit from a tailored dog haemodynamic response function (HRF). In two indepen- 
dent experiments, dogs were presented with different visual stimuli. BOLD signal changes in the visual cortex 
during these experiments were used for (a) the identification and estimation of a tailored dog HRF, and (b) the 
independent validation of the resulting dog HRF estimate. Time course analyses revealed that the BOLD signal 
in the primary visual cortex peaked significantly earlier in dogs compared to humans, while being comparable 
in shape. Deriving a tailored dog HRF significantly improved the model fit in both experiments, compared to the 
canonical HRF used in human fMRI. Using the dog HRF yielded significantly increased activation during visual 
stimulation, extending from the occipital lobe to the caudal parietal cortex, the bilateral temporal cortex, into 
bilateral hippocampal and thalamic regions. In sum, our findings provide robust evidence for an earlier onset 
of the dog HRF in two visual stimulation paradigms, and suggest that using such an HRF will be important to 
increase fMRI detection power in canine neuroimaging. By providing the parameters of the tailored dog HRF and 
related code, we encourage and enable other researchers to validate whether our findings generalize to other 
sensory modalities and experimental paradigms. 
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. Introduction 

Animal research involving domesticated dogs ( Canis familiaris )
ields important insights into non-invasive comparative neuroscience
 Andics, Gácsi, Faragó, Kis, & Miklósi, 2014 ; Bunford, Andics, Kis,
iklósi, & Gácsi, 2017 ; Fitch, Huber, & Bugnyar, 2010 ), and allows

esearchers to study the neural correlates of cognitive abilities, i.e.,
ow dogs perceive or process their environment (e.g. Andics & Mik-
ósi, 2018 ; Thompkins, Deshpande, Waggoner, & Katz, 2016 for re-
iew). For example, recent work has used functional magnetic reso-
ance imaging (fMRI) to study the neural representations during au-
itory stimulation or lexical processing ( Andics et al., 2016 , 2014 ;
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richard et al., 2019 ; Prichard, Cook, Spivak, Chhibber, & Berns, 2018 ),
ace perception ( Cuaya, Hernández-Pérez, & Concha, 2016 ; Dilks et al.,
015 ; Hernández-Pérez, Concha, & Cuaya, 2018 ; Szabó et al., 2020 ;
hompkins et al., 2018 ), olfactory processing ( Berns, Brooks, & Spivak,
015 ; Jia et al., 2014 ), sense for numeracy ( Aulet et al., 2019 ), jeal-
usy ( Cook, Prichard, Spivak, & Berns, 2018 ), and reward processing
 Berns, Brooks, & Spivak, 2012 ; Berns, Brooks, Spivak, & Levy, 2017 ;
erns, Brooks, & Spivak, 2013 ; Cook, Prichard, Spivak, & Berns, 2016 ;
ook, Spivak, & Berns, 2014 ; Prichard, Chhibber, Athanassiades, Spi-
ak, & Berns, 2018 ) in dogs. So far, dog fMRI studies have relied on
ethodological standards originally developed for human (f)MRI, but

t has been proposed that hardware as well as data analysis approaches
ailored to dogs might be more suitable ( Huber & Lamm, 2017 ). Al-
hough the majority of fMRI pre-processing steps are readily transferable
rom humans to dogs (e.g., slice timing correction, realignment, smooth-
ng), humans and dogs might differ in many aspects other than appar-
nt differences in neuroanatomy ( Hecht et al., 2019 ; Horschler et al.,
tember 2020 
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019 ; Schoenebeck & Ostrander, 2013 ), such as differences in vascu-
ar and neuronal physiology. Here, we critically examined the state of
he art in canine neuroimaging methodology and aimed at optimizing
ata processing and analysis pipelines to improve fMRI sensitivity and
pecificity. fMRI-based neuroimaging commonly uses a the a general lin-
ar model (GLM) to describe voxel-wise haemodynamic response time
ourses by convolving the regressors of the experimental conditions
ith a haemodynamic response function (referred to as “human HRF ”

hroughout the text). This typically involves a double-gamma function to
ccount for the delayed peak at approx. 5 s after stimulus onset and the
ost-stimulus undershoot ( Friston, Fletcher, et al., 1998 ; Friston et al.,
995 ; Friston, Jezzard, & Turner, 1994 ; Worsley & Friston, 1995 ). So far,
anine neuroimaging studies have used the standard human HRF (e.g.,
ndics et al., 2014 ; Cuaya, Hernández-Pérez, & Concha, 2016 ), a model
f the human HRF based on a single gamma function (e.g., Cook et al.,
014 ; Dilks et al., 2015 ), or a Fourier basis set ( Aguirre et al., 2007 ).
owever, assumptions about the (canonical) human HRF shape and its

emporal dynamics might not apply in dogs. An accurate HRF model is
rucial, as even minor deviations can lead to substantial loss of power
 Handwerker, Ollinger, & D’Esposito, 2004 ), thus not only reducing the
hance of detecting true effects but also increasing the likelihood for
alse-positive results ( Lindquist, Meng Loh, Atlas, & Wager, 2009 ) and
nflated effect sizes (e.g., Ioannidis, 2005 ; Simmons, Nelson, & Simon-
ohn, 2011 ). Additionally, fMRI studies with small sample sizes are of-
en considered underpowered ( Button et al., 2013 ; Cremers, Wager, &
arkoni, 2017 ; Poldrack et al., 2017 ; Simmons et al., 2011 ), which is
 ubiquitous problem in canine research due to the complexity of the
xperiments (median of approx. 12.5 dogs, although sample sizes are
ncreasing). Under these circumstances, it is particularly crucial to test
hether the BOLD response in dogs is adequately captured with the

anonical human HRF, or some variations of it. 
The shape of the human HRF has been discussed extensively since

ts adoption in fMRI data analysis ( Aguirre, Zarahn, & D’Esposito, 1998 ;
oynton, Engel, Glover, & Heeger, 1996 ; Glover, 1999 ). Numerous fac-
ors causing HRF variability have been identified, e.g., developmen-
al changes ( Arichi et al., 2012 ), and clinical conditions ( Ford, John-
on, Whitfield, Faustman, & Mathalon, 2005 ). A frequent approach
o account for potential HRF variability within a participant sample
used twice for a dog sample, Jia et al., 2014 , 2016 ) is to add tem-
oral and/or dispersion derivatives (TDD) along with the HRF regressor
hen applying the GLM, used to calculate a so-called informed basis set
 Friston, Fletcher, et al., 1998 ; Friston, Josephs, Rees, & Turner, 1998 ;
enson, Price, Rugg, Turner, & Friston, 2002 ). Despite the increased
exibility in the model, the basis function depends on prior knowledge
bout the average shape of the underlying BOLD signal, which is cur-
ently not available in canine neuroscience research. 

Previous studies using invasive recordings indeed demonstrated
hat the HRF varies across mammalian species. In comparison to hu-
ans, the HRF was shown to peak earlier in rats ( De Zwart et al.,
005 ; Lambers et al., 2020 ; Silva, Koretsky, & Duyn, 2007 ) and
ice ( Chen et al., 2020 ), while the HRF in macaque monkeys ap-
ears similar ( Baumann et al., 2010 ; Goense & Logothetis, 2008 ;
oyama et al., 2004 ; Logothetis, Pauls, Augath, Trinath, & Oeltermann,
001 ; Nakahara, Hayashi, Konishi, & Miyashita, 2002 ; Patel, Cohen,
aker, Snyder, & Corbetta, 2018 ). Deviations from the human HRF in
erms of shape and temporal dynamics seem to decrease in species with
loser common ancestry to humans ( Upham, Esselstyn, & Jetz, 2019 )
nd with increasing absolute brain size (e.g., Roth & Dicke, 2005 for
eview). Considering the variations across species and potential differ-
nces in underlying neurophysiology, it seems plausible that the human
RF might deviate from the average BOLD signal in dogs. However, pre-
ise conclusions are currently not possible, as systematic investigations
f the BOLD signal have not yet been performed in dogs. 

Here, we aimed to close this gap and used non-invasive fMRI in
wake dogs that were specifically trained for this approach. In two inde-
endent experiments, we used different visual stimulation experiments
nd a step-wise analysis approach to establish and validate our results,
espectively. In the first experiment, dogs viewed a flickering checker-
oard interspersed with a baseline condition (flickering checkerboard
xperiment, experiment 1). The experiment employed a block design,
imed at achieving a robust measure of the average BOLD signal in the
rimary visual cortex (V1). Based on the resulting V1 BOLD signal data,
e identified and estimated a tailored dog HRF, compared its model fit

o the one based on using the human HRF, and differences in whole-
rain activation between the two HRFs. We also tested if adding time
nd dispersion derivatives to the human HRF could sufficiently account
or potential deviations of the dog- from the human HRF. Data from a
econd experiment, which had employed an event-related visual stim-
lation design (face processing experiment, experiment 2), were then
sed to validate the results from the flickering checkerboard experi-
ent. We opted for visual stimulation as the V1 can be easily located

see e.g., Langley & Grünbaum, 1890 ; Marquis, 1934 ; Uemura, 2015 ;
ing & Smith, 1942 ), thus ameliorating the problem of a common three-

imensional coordinate system in canines. Finally, to encourage repro-
ucibility, we openly share our data and provide a detailed description
f the processing and analysis pipeline (see also for similar challenges
n reproducibility in human fMRI: Carp, 2012b , 2012a ; Nichols et al.,
017 ; Poldrack et al., 2017 , 2008 ). Together, our results provide a first
nvestigation on whether the human HRF model appropriately fits the
verage BOLD signal in dogs and whether estimating a novel dog HRF
an increase fMRI specificity and detection power. 

. Materials and methods 

.1. Sample 

Seventeen pet dogs participated in the flickering checkerboard
xperiment (experiment 1; 10 females, age range = 3–11 years,
ean = 7.24 years, SD = 2.33 years); consisting of 12 border col-

ies, 2 Australian shepherds, 1 border collie Australian shepherd mix,
 Labrador retriever and 1 mixed-breed dog (weight range = 15–27 kg,
ean = 19.67 kg, SD = 3.87). A subsample of fourteen dogs also partic-

pated in the face processing experiment (experiment 2; 8 females, age
ange = 3–11 years, mean = 7.21 years, SD = 2.46 years) in the same or
ax. two months apart; consisting of 10 border collies, 1 Labrador re-

riever, 1 Australian shepherd, 1 border collie Australian shepherd mix
nd 1 mixed-breed dog (weight range = 15–27 kg, mean = 19.25 kg,
D = 4.03). 

All dogs passed an initial medical examination concerning eyesight
nd general health. The human caregivers gave written informed con-
ent to their dogs’ participation and did not receive any monetary com-
ensation. The dogs were fully awake and unrestrained, and were able
o exit the MR scanner at any time. To achieve this, they received exten-
ive training prior to the MRI sessions in order to habituate them to the
RI environment (see Karl, Boch, Virányi, Lamm, & Huber, 2019 for a

etailed description of the training procedure, and Berns & Cook, 2016 ;
trassberg, Waggoner, Deshpande, & Katz, 2019 for similar procedures).
he study was approved by the institutional ethics and animal welfare
ommission in accordance with Good Scientific Practice (GSP) guide-
ines and national legislation at the University of Veterinary Medicine
ienna (ETK-06/06/2017), based on a pilot study conducted at the Uni-
ersity of Vienna. The current study complies with the ARRIVE Guide-
ines ( Kilkenny, Browne, Cuthill, Emerson, & Altman, 2010 ). 

.2. Experimental setup 

.2.1. Preparation 

Together with the dog trainer, the dog entered the MR scanner room
earing earplugs and an additional head bandage to secure optimal

arplug positioning and to enhance noise protection. The dog then ac-
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Fig. 1. Overview of experimental approach to explore the average BOLD signal 
in dogs and estimate a tailored dog haemodynamic response function (HRF). (A) 
All dogs were trained to position their head in a 15-channel human knee coil 
and to stay motionless during data acquisition. (B) We acquired data in two dif- 
ferent visual stimulation experiments. In (1), we extracted the average primary 
visual cortex (V1) BOLD signal using data from a flickering checkerboard ex- 
periment, and estimated a tailored dog HRF. We compared this dog HRF to the 
canonical human HRF, and to the human HRF with time and dispersion deriva- 
tives (TDD). in (2), we validated the results using a face processing experiment, 
whose data served as an independent test data set. (C) Structural scans were ac- 
quired in a session prior to functional data acquisition of the visual stimulation 
experiments; functional tasks were acquired in separate sessions. Movement pa- 
rameters were assessed after successful completion of a task. If motion exceeded 
3 mm, we repeated the task in additional sessions. (D) We created individual 
tailor-made brain masks using itk-SNAP ( Yushkevich et al., 2006 ) to skull-strip 
the structural images and consequently improve co-registration and normaliza- 
essed the scanner bed via a custom-made ramp and positioned the head
nside the coil, seated in sphinx position ( Fig. 1 A). The dog trainer then
oved the dog into the scanner bore and visual tasks were presented
sing an MR-compatible computer screen placed at the end of the scan-
er bore (32 inch). Additionally, we used the camera of an eye-tracker
Eyelink 1000 Plus, SR Research, Ontario, Canada) to ensure that the
ogs stayed awake, did not close their eyes during stimulus onsets, or
hether they looked away from the visual stimulation (i.e., downward
aze during stimulus presentation; see supplementary material A, figure
1 for example of monitoring setup), and to monitor overall movement
 N = 5 dogs in experiment 2 were not monitored due to later implemen-
ation of the camera). The dog trainer remained in the MR-scanner room
hroughout the entire scan session but left the dog’s visual field before
ask onset. The majority of the dogs first participated in the flickering
heckerboard experiment followed by the face processing experiment in
 subsequent MR-session ( Fig. 1 B). Data acquisition was aborted if the
og moved extensively (as observed using eye-tracking, see above) or
f the dog exited the scanner bore during the task. Data collection was
hen repeated within the same or a subsequent session, depending on
he dog’s motivation. Following the scan session, we evaluated the re-
lignment parameters and re-invited the dog to repeat the experiment
n a subsequent session if head motion exceeded a threshold of 3 mm
 Fig. 1 C). On average, two scan sessions were necessary to complete the
xperiment below the motion threshold for both experiments; 12 out of
7 dogs and 9 out of 14 dogs succeeded in their first scan session for
xperiment 1 and experiment 2, respectively. After completing a run,
he dog exited the MR scanner and received a food reward. 

.2.2. Flickering checkerboard experiment (experiment 1) 

The task used in this experiment alternated between blocks of vi-
ual stimulation (flickering checkerboard covering the whole screen and
reen cross in the centre for 10 s) and a visual baseline with a green cross
resented on a black screen for 10 s. The total task duration was 2.2 min,
ncluding six blocks of visual stimulation and 6 blocks of baseline in a
xed order, starting with the visual baseline condition (see Fig. 1 B). We
hose this experiment for the dog HRF estimation based on the fact that
 block design can be expected to be more robust and predictable, even
f the human and dog HRFs and the actual BOLD signal time courses
iffered (see supplementary material A, 2 Flipping experiment 1 and 2
or a flipped study design, using the face processing experiment as HRF
stimation data set, which resulted in similar results). 

.2.3. Face processing experiment (experiment 2) 

The task for experiment 2 alternated between short events of visual
timulation (3 s clips of varying conditions, showing smooth transitions
etween two facial expressions from different human models, all on
hite background; 500 × 500 pixels) and a visual baseline with a black

ross on a white screen jittered between 3–7 s (see Fig. 1 B). Within
he scope of the present methodological study, we focused on visual re-
ponses compared to baseline, irrespective of the different conditions
results of this will be reported elsewhere). The total task comprised 60
rials of visual stimulation split in two runs. 

Each run took 5 min with a short break outside the MR scanner if
oth runs were acquired in the same session. 

.3. MRI data acquisition 

Data were collected using a 3T Siemens Skyra MR-system using a 15-
hannel coil developed for structural imaging of the human knee. Func-
ional imaging data for both tasks were obtained from 24 axial slices (in-
erleaved acquisition; descending order, covering the whole brain) us-
ng a 2-fold multiband-accelerated echo planar imaging (EPI) sequence
nd a voxel size of 1.5 × 1.5 × 2 mm 

3 (TR/TE = 1000/38 ms, field of
iew (FoV) = 144 × 144 × 58 mm 

3 , flip angle = 61°, 20% gap). The
ask from experiment 1 (flickering checkerboard experiment) consisted
tion of the canine neuroimaging data. 
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Fig. 2. Schematic description of the tailored data processing workflow for the canine neuroimaging data including (A) functional images and (B) the structural image. 
For the first level analysis (step 10, First level (GLMs)) functional data are masked using anatomical boundaries (normalized binary mask). Illustrative structural 
and functional images as well as binary mask were derived from one dog in the sample; tissue probability maps (TPMs) were from the canine breed-averaged atlas 
( Nitzsche et al., 2019 ). Numbers, in bold, describe the sequence of processing steps. Est., estimate; Res., resliced, GLM, general linear model. 
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f a single run comprising 134 scans, and the task employed in exper-
ment 2 (face processing experiment) comprised two runs of 270 scans
ach. The dogs had multiple attempts to complete the task in case of
xcessive head motion (see 2.2. experimental design). For one dog, we
runcated the second run to 190 scans due to excessive motion (change
f head position) and the dog’s unavailability for repeating the session.
he structural image was obtained using a voxel size of 0.7 mm isotropic
TR/TE = 2100/3.13 ms, FoV = 230 × 230 × 165 mm 

3 ) and was acquired
n a prior scan session, separated from the functional imaging sessions. 

.4. Data processing and statistical analysis 

.4.1. MRI data preprocessing 

All imaging data was analysed using SPM12 ( https://www.fil.
on.ucl.ac.uk/spm/software/spm12/ ) and Matlab 2014b (MathWorks;
ee Fig. 2 for an overview of the workflow). After slice timing correc-
ion (referenced to the middle slice, Sladky et al., 2011 ) and image re-
lignment, the functional images were manually reoriented to match
he orientation of the canine breed-averaged template (Nitzsche et al.,
017) with the rostral commissure as a visual reference using the SPM
odule “Reorient images / Set origin ”. We then manually skull-stripped

he structural image using an individual binary brain mask for each dog,
reated using itk-SNAP ( Yushkevich et al., 2006 ). Based on preliminary
nalyses, skull-stripping canine imaging data proved to be essential for
uccessful automatic co-registration. This way, the co-registration algo-
ithm successfully detects brain borders, not incorrectly relying on large
uscles that surround the dog brain but have similar image intensity

see Fig. 1 D). The structural image, the individual binary brain mask,
nd the functional imaging data were then co-registered to the mean
mage of each run. Next, the structural image was segmented ( “Old Seg-

entation ” module of SPM12) into grey matter, white matter, and cere-
rospinal fluid, using the tissue probability maps provided by the ca-
ine breed-averaged template ( Nitzsche et al., 2019 ). We then normal-
zed (using the “Old Normalization ” module of SPM12) the functional
nd structural imaging data, along with the individual binary brain
ask. Lastly, functional images were resliced (1.5 mm isotropic) and

moothed using a 3 mm Gaussian kernel (full-width-at-half-maximum,
WHM). 

To additionally account for head motion, we performed motion
crubbing by calculating the scan-to-scan motion for each dog, refer-
ing to the framewise displacement (FD) between the current scan t and
ts preceeding scan t -1. For each scan that exceeded the FD threshold
f 0.5 mm, we entered an additional motion regressor to the first-level
LM design matrix ( Power, Barnes, Snyder, Schlaggar, & Petersen, 2012 ;
ower et al., 2014 ). For the checkerboard experiment (experiment 1),
n average 7.8% of the scans were removed (~10/134 scans, ranging
rom 0 to 36 scans; mean FD: 0.23 mm, 90 th percentile: 0.39 mm). For
he face processing experiment (experiment 2), on average 3.5% (run
) and 5.5% (run 2) scans were removed (run 1: ~ 10/270 scans; run
: ~ 15/270 scans; ranging from 0 to 52 across runs; mean FD run 1:
.18 mm, 90 th percentile run1: 0.28 mm; mean FD run 2: 0.22 mm, 90 th 

ercentile run 2: 0.34 mm). 

.4.2. Template normalization 

We attempted to provide a unified coordinate system by com-
ining two available templates, (1) based on a canine breed-average
 Nitzsche et al., 2019 ) combined with (2) the normalized labels from
nother canine template based on a single male Golden Retriever
 Czeibert, Andics, Petneházy, & Kubinyi, 2019 ). First, we segmented
 “Old Segmentation ”) the structural template ( Czeibert et al., 2019 ) us-
ng the tissue probability maps provided by the breed-averaged template
 Nitzsche et al., 2019 ). Then, we normalized ( “Old Normalization ”) both
he structural template and the NIfTI-file containing the atlas labels. 

.5. fMRI data analysis 

We now provide an overview of the analysis approach followed by
ore details on each analysis step in the following section (see also

ig. 3 ). For the exploratory investigation of the average BOLD signal
nd estimation of the tailored dog HRF, we first analysed activation
hanges in V1 during experiment 1 (contrast flickering checkerboard
 visual baseline) in the following steps: (1) we extracted the average
1 time course of the BOLD signal employing a finite impulse response
FIR) model (exploration and estimation analysis step 1, extraction V1
OLD signal); (2) we estimated a tailored dog HRF based on the FIR data
bove (exploration and estimation analysis step 2, dog HRF estimation);
3) we then compared the human canonical HRF (i.e., the default HRF
arameters provided by SPM12) with the dog HRF using model fit anal-
sis and Wilcoxon signed ranks tests (exploration and estimation anal-
sis step 3, model fit comparison). Then, to expand comparisons to the
hole-brain, (4) we performed first-level analysis using the human HRF,

he human HRF with time and dispersion derivatives and the tailored
og HRF (exploration and estimation analysis step 4, first-level GLMs)
nd (5) analysed neuroimaging data on a group-level along with paired-
ample t -tests (exploration and estimation analysis steps 5, group-level
ctivation comparisons). 

Next, to validate the results from experiment 1, which revealed an
arlier peak of the V1 BOLD signal in dogs, we cross-validated them by
nalysing V1 activation changes during the face processing experiment
contrast faces > visual baseline), using a similar but modified approach:

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Fig. 3. Overview o of analyses underpinning the exploration of the average V1 
BOLD signal in dogs, estimation of the tailored dog haemodynamic response 
function (HRF), and validation of the HRF in a second independent data set. (A) 
Data from the flickering checkerboard experiment served for the exploratory 
and estimation analysis (1) to extract the average V1 BOLD signal in dogs and 
visually compare it to the canonical human HRF model (i.e., the default HRF pa- 
rameters provided by SPM12) using a finite impulse response (FIR) model, (2) 
to estimate a tailored dog HRF based on the empirical data, and (3) to compare 
model fits of the human and dog HRF in the visual cortex. On the whole-brain 
level, (4) we then performed first-level analyses using the human HRF, the hu- 
man HRF along with time and dispersion derivatives (TDD) and the tailored dog 
HRF in order to (5) perform whole-brain group comparisons using one-sample 
and paired-sample t -tests across HRF models. (B) Results from (A) were then 
validated using the data from the face processing experiment as an independent 
validation data set. All analysis steps were identical to above, except for the dog 
HRF estimation. GLM, general linear model; BOLD, Blood Oxygenation Level 
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1) we extracted the average time course of the V1 BOLD signal during
he face processing experiment using a FIR model (validation step 1,
xtraction V1 BOLD signal); (2) we compared the HRF models based on
heir model fit and using Wilcoxon signed ranks tests (validation step
, model comparison); (3) we performed univariate activation analysis
sing the human HRF, the human HRF along with time and dispersion
erivatives (TDD), and the dog HRF (validation step 3, first-level GLMs);
astly, (4) we performed group activation analyses along with paired-
ample t -tests (validation step 4, group-level activation comparisons). 

.5.1. Exploration and estimation analysis: Flickering checkerboard 

xperiment (experiment 1) 

Step 1: Extraction average V1 BOLD signal. We used a finite im-
ulse response (FIR) model to measure the average V1 time course of
he BOLD signal in dogs. This flexible approach makes minimal assump-
ions about the shape of the BOLD signal and thus results in indepen-
ent response estimates for a predetermined number of time bins (in
he present case, one time bin per TR). We estimated FIRs covering the
isual stimulation blocks (starting at stimulus onset (0 s) until 10 s af-
er stimulus offset), yielding a duration of 20 s. The 20 s where then
ivided in 20 time bins (TR = 1 s), each modelled with a separate re-
ressor using an impulse response function. We then extract the average
1 time course, based on V1 coordinates obtained from the group-based
omparison using the human HRF (exploratory and estimation analysis
tep 5; see also Table 1 , section “human HRF ”), using (a) a 4 mm sphere
laced around the local maximum of the cluster that covered the occip-
tal lobe ( Fig. 4 A) and (b) expanding over V1 as determined by our atlas
abels ( Czeibert et al., 2019 ; Nitzsche et al., 2019 ). Finally, we extracted
ach dog’s average BOLD time series and calculated the time course of
ctivation induced by the visual stimulation block across all dogs. 
Step 2: Estimation of the dog HRF. Based on the results from step
, which upon visual inspection revealed the need for a tailored dog
RF with earlier onset, we estimated a new parametrization for SPM’s
anonical HRF, yielding a tailored dog HRF model. The spm_hrf function
ses seven optional parameters to specify the shape of the HRF: the delay
f the response (relative to onset, p 1 = 6 s), the delay of the undershoot
relative to onset, p 2 = 16 s), the dispersion of the response ( p 3 = 1),
he dispersion of undershoot ( p 4 = 1), the ratio of the response to the
ndershoot ( p 5 = 6), the onset ( p 6 = 0 s), and the length of the kernel
 p 7 = 32 s). We used MATLAB’s fminsearch function, a multidimensional
nconstrained nonlinear minimization method, to optimize the model
t of the regression analysis ( R 

2 -statistics of MATLAB’s regress function)
y varying the values of p 1 , p 2 , p 5 , p 6 . The assumed plausible ranges for
he haemodynamic parameters were: p 1 = [1 10 s], p 2 = [1 20 s], p 5 = [1
0 s], p 6 = [0 5 s], and the regression analysis was identical to a standard
PM first-level analysis (see above, step 1). We chose not to deviate from
he default-values for response ( p 3 ) or undershoot dispersion ( p 4 ), or the
verall kernel length ( p 7 ) to prevent overfitting. 

Step 3: Model fit comparison. We then calculated the individual
ingle-subject R 

2 -statistics of each GLM with the different HRF param-
ters and compared the model fit to the extracted V1 BOLD signal be-
ween human and dog HRF using a Wilcoxon signed ranks test. 

Step 4: Human HRF. Using the GLM approach implemented in
PM12, we estimated contrast images for each dog that reflected task-
elated activation (contrast checkerboard > baseline). The first-level de-
ign matrix of each dog contained a task regressor modelling visual
timulation, time-locked to the onset of each block (duration 10 s) and
onvolved with the human (canonical) HRF. The six realignment pa-
ameters along with regressors modelling framewise displacement (see
bove) were added to the design matrix to account for head motion. Nor-
alized, and individually created binary masks (see above and Figure 2 )
ere used as explicit masks and a high-pass filter with a cut-off at 128 s
as applied. 

Human HRF + TDD. Next, to account for variability ( Friston, Fletcher,
t al., 1998 ; Friston, Josephs, et al., 1998 ; Henson et al., 2002 ), we
dded temporal and dispersion derivatives (TDD) to the human HRF.
he visual stimulation regressor was thus convolved with the human
RF along with its TDD. This resulted in three regression parameter
stimates consisting of: (1) the human canonical HRF ( ̂𝛽1 ) , (2) the time
erivative ( ̂𝛽2 ) , and (3) the dispersion derivative ( ̂𝛽3 ) . We then combined
ll three regressors to form one “derivative boost (H) ”-regressor per dog
 Calhoun, Stevens, Pearlson, & Kiehl, 2004 ; Lindquist et al., 2009 ): 𝐻 =
𝑔𝑛 ( ̂𝛽1 ) 

√ 

𝛽2 1 + 𝛽2 2 + 𝛽2 3 . 

Dog HRF. Next, we set up a first-level model (same settings as previ-
usly) including the data that was now estimated and convolved using
he estimated dog HRF (step 3, human HRF). 

Step 5: Group-level activation comparison. To test for activation
ifferences during visual stimulation on a group-level, we implemented
ne sample t -tests for each HRF model (steps 1, 2, 5; contrasting
ickering checkerboard > baseline; H-regressor for TDD model),
s well as paired-sample t -tests (checkerboard > baseline). Unless
tated otherwise, significance was determined using cluster-level
nference with a cluster-defining threshold p < 0.001 and a cluster
robability of p < 0.05 family-wise error (FWE) corrected for multiple
omparisons. Cluster extent was calculated using the SPM exten-
ion “CorrClusTh.m ” (by Thomas Nichols, University of Warwick,
nited Kingdom, and Marko Wilke, University of Tübingen, Germany;
ttps://warwick.ac.uk/fac/sci/statistics/staff/academic-research/ 
ichols/scripts/spm/ ). 

.5.2. Validation analysis: Face processing experiment (experiment 2) 

Independent data obtained during the face processing experiment
experiment 2) were then used to validate the exploratory results and
o compare all three HRF models. 

https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/scripts/spm/
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Step 1: Extraction average V1 BOLD signal. Similar to above (explo-
ation and estimation analysis, step 1) we used a finite impulse response
FIR) model to extract the individual BOLD signal time courses, but de-
ned 10 time bins starting at the stimulus onset (0 s) until 7 s after
timulus offset. Each time bin had a duration of 1 s ( = length of TR)
nd was modelled with a separate regressor per time bin using impulse
esponse functions. We then placed a 4 mm sphere around the local
axima of the cluster encompassing the V1, and used the coordinates

merging from the human HRF + TDD model (validation analysis, step
; Table 2 section “human HRF + TDD ”) since the human HRF did not
urvive the significance threshold ( Fig. 4 B). 

Step 2: Model fit comparison. This step was almost identical to above
exploration and estimation analysis, step 3) but was performed based
n the FIR data from experiment 2 (validation analysis, step 1). 

Step 3: Human HRF. Analysis was identical to above (exploration
nd estimation analysis, step 4 human HRF), but visual stimulation was
odelled with one task regressor time locked to the event onset (dura-

ion of 3 s), contrasted against visual baseline (contrast faces > baseline).
Human HRF + TDD. Analysis was identical to above (exploration and

stimation analysis, step 4 human HRF + TDD) using the task regressor
rom experiment 2 (validation analysis, step 3 human HRF) but resulted
n two informed basis sets as this task contained two separate runs. We
rst calculated the mean of each parameter estimate across both runs

i.e. 𝛽1 _ 𝑚𝑒𝑎𝑛 = 

𝛽1 _ 𝑟𝑢𝑛 1 + 𝛽1 _ 𝑟𝑢𝑛 2 
2 ) and then, as above, combined all three av-

raged regressors to one “derivative boost (H) ”-regressor per dog. 
Dog HRF. We defined the same first-level model as described above

validation analysis, step 3 human HRF) but the task regressor was con-
olved with the newly estimated dog HRF. 

Step 4: Group-level activation comparison. This step was performed
ased on the first-level results from experiment 2 but otherwise identical
o above (exploration and estimation analysis, step 5). 
i  

Table 1 

Flickering checkerboard experiment: Task-related activ

Contrast, brain region & HRF Coordinates (

x y 

Human HRF: Flickering checkerboard > visual baseline

L caudal splenial gyrus (O) -1 -29 

L hippocampus (T) -9 -18 

Human HRF + TDD: Flickering checkerboard > visual ba

L caudal splenial gyrus (O) 1 -26 

R medial suprasylvian gyrus (T) 13 -20 

Dog HRF: Flickering checkerboard > visual baseline (k 

R caudal splenial gyrus (O) 1 -27 

L medial suprasylvian gyrus (T) -16 -18 

L caudal suprasylvian gyrus (T) -19 -24 

L hippocampus (T) -9 -17 

R hippocampus (T) 8 -15 

Human HRF + TDD > human HRF: Flickering checkerboa

L caudal splenial gyrus (O) -3 -30 

Human HRF > dog HRF: Flickering checkerboard > visu

L insular cortex (T) -18 -11 

Dog HRF > human HRF: Flickering checkerboard > visu

R caudal splenial gyrus (O) 1 -27 

R medial suprasylvian gyrus (T) 17 -18 

L medial suprasylvian gyrus (T) -16 -20 

Human HRF + TDD > dog HRF: Flickering checkerboard 

L caudal splenial gyrus (O) -3 -30 

Effects were tested for significance with a cluster-definin
of p < 0.05 FWE-corrected for multiple comparisons. Cr
results for each one-sample t -test, each haemodynamic 
t -tests between all HRF models. The first local maximum
resent the location of peak voxels and refer to the canine
the template along with another single dog template ( Cz
cal nomenclature for all tables. TDD, time and dispersio
L, left; R, right. 
.6. Data and code availability statement 

Unthresholded statistical maps from the exploratory and estimation
nalysis, the Matlab-based code to calculate the HRF model fits, the FIR
ata for both experiments, and a spm_my_defaults.m -script containing the
og HRF parameters have been added as supplementary material. 

. Results 

.1. Exploration and estimation analysis: Flickering checkerboard 

xperiment (experiment 1) 

FIR model and dog HRF estimation. To investigate the time course of
he BOLD response in dogs, we used a model-free analysis (FIR model,
xploration and estimation analysis, step 1). Results suggested a tem-
oral difference between the standard (canonical) human HRF and the
verage response in our canine sample. Visual inspection of the results
evealed an earlier peak after visual stimulation onset compared to con-
olution using a human HRF and, consequently, an earlier decline and
eturn to baseline ( Fig. 4 A). Therefore, the estimation based on the FIR
ata (exploration and estimation analysis, step 2) resulted in the follow-
ng parameter changes to the (canonical) human HRF: a shorter response
elay ( p 1 = 4.3 s), a delay of the undershoot ( p 2 = 6.6 s), as well as a
ower ratio of the response to the undershoot ( p 5 = 3). This newly esti-
ated dog HRF peaked around 2–3 s earlier as compared to the human
RF ( Fig. 4 A). 

.1.1. Determining the HRF model fits 

R 

2 -statistics of both GLMs calculated individually (main analysis,
tep 6) revealed a better model fit of the average time course of acti-
ation when using the dog HRF, with a mean R 

2 of 0.64 ( SD = 0.21),
ncreasing the fit almost two times in comparison to the model using the
ation during visual stimulation 

breed-averaged template) z -value cluster size 

z 

 (k = 14) 

16 5.71 610 

1 4.47 15 

seline ( k = 10) 

19 6.05 246 

18 4.61 11 

= 15) 

18 6.23 823 

19 4.82 30 

7 4.17 18 

3 4.08 23 

6 4.04 19 

rd > visual baseline ( k = 10) 

16 5.58 175 

al baseline (k = 14) 

-2 4.58 14 

al baseline ( k = 14) 

18 5.78 316 

21 4.71 54 

21 4.17 14 

> visual baseline ( k = 10) 

16 6.00 162 

g threshold of p < 0.001 and a cluster probability 
itical cluster sizes ( k ) are reported along with the 
response (HRF) model, and for the paired-sample 
 within each cluster is reported; coordinates rep- 
 breed-averaged template ( Nitzsche et al., 2019 ), 
eibert et al., 2019 ) served to determine anatomi- 
n derivatives; O, occipital lobe; T, temporal lobe; 
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Table 2 

Face processing experiment: Task-related activation during visual stimulation 

Contrast, brain region & HRF 
Coordinates (breed-averaged template) z - 

value 
cluster 
size x y z 

Human HRF + TDD: Visual stimulation > visual baseline ( k = 21) 

R lateral olfactorial gyrus (T) 13 3 -4 4.65 21 

R caudal marginal gyrus (O) 1 -29 19 4.29 26 

Dog HRF: Visual stimulation > visual baseline ( k = 14) 

R medial suprasylvian gyrus (T) 16 -23 19 4.88 225 

R rostral ectosylvian gyrus (T) 17 -8 10 4.54 53 

R caudal splenial gyrus (O) 2 -32 18 4.53 130 

L caudal composite gyrus (T) -22 -20 -4 4.49 204 

Dog HRF > human HRF: Visual stimulation > visual baseline ( k ∗ = 10) 

R medial suprasylvian gyrus (T) 17 -23 18 4.19 28 

L medial suprasylvian gyrus (T) -18 -24 15 3.70 24 

Dog HRF > human HRF + TDD: Visual stimulation > visual baseline ( k ∗ = 10) 

R ectomarginal gyrus (P) 8 -18 19 4.04 22 

Effects were tested for significance with a cluster-defining threshold of p < 0.001 and a cluster 
probability of p < 0.05 FWE-corrected for multiple comparisons. Critical cluster sizes ( k ) are 
reported along with the results for each one sample t -test per haemodynamic response function 
(HRF) model. For the one-sample t -test based on the human HRF GLM, no cluster survived 
the threshold. None of the paired-sample t -tests across HRF models survived the critical cluster 
threshold ( k ), therefore the significance level was lowered to p < 0.005 with an arbitrary cluster 
threshold ( k ∗ ) of 10 voxels. One paired-sample t -test (human HRF vs. human HRF and time 
and dispersion derivatives (TDD)) did not survive the lowered threshold as well as the contrasts 
human > dog HRF, human HRF + TDD > dog HRF. The first local maximum within each cluster 
is reported; coordinates represent the location of peak voxels and refer to the canine breed- 
averaged template ( Nitzsche et al., 2019 ), the template along with another single dog template 
( Czeibert et al., 2019 ) served to determine anatomical nomenclature for all tables. O, occipital 
lobe; T, temporal lobe; L, left; R, right. 
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uman HRF (mean R 

2 = 0.35 ( SD = 0.20). This substantial increase in
xplained variance was statistically significant ( z = 142, p = 0.002). 

.1.2. Visual activation: Human HRF / human HRF + TDD 

Expanding to whole-brain comparisons (exploration and estimation
nalysis, step 5), we performed standard whole-brain GLM analyses
imilar to other canine neuroimaging papers (e.g., Andics et al., 2016 ;
uaya et al., 2016 ) and localized visual processing areas by convolving

MRI data with the human HRF (exploration and estimation analysis,
tep 3 human HRF). Results revealed increased activation within the
ccipital lobe (V1) and within the left hippocampal area ( Table 1 , sec-
ion “human HRF ”). When accounting for HRF variability (exploration
nd estimation analysis, step 3, human HRF + TDD), we found similar ac-
ivation within V1 during visual stimulation (but only about half the size
ompared to the human HRF) as well as within the right dorsal tempo-
al lobe ( Table 1 , section “human HRF + TDD). Additionally, V1 clusters
temming from both analysis types expanded from the occipital lobe to
ortions of the parietal and right temporal lobe ( Fig. 5 A). Thus, analyses
ased on the standard human HRF with and without accounting for its
ariability yielded comparable activation increases in V1 during visual
timulation. 

.1.3. Visual activation: Dog HRF 

We now report in more detail the brain areas revealing significant
ctivation on a group-level using the tailored dog HRF, since it signifi-
antly improved the model fit in the V1 compared to the human HRF (ex-
loration and estimation analysis, steps 2-3). We observed five clusters
ith stronger activation during visual stimulation compared to base-

ine ( Table 1 , section “dog HRF ”, Fig. 5 ), which is more than double the
mount of significant clusters, as well as cluster sizes, compared to the
emaining models (main analysis, steps 1, 2; Table 1 ). The largest cluster
xpanded from the V1 to bilateral parietal and temporal lobe regions,
ollowed by smaller clusters in the right temporal lobe (see Table 1 and
ig. 6 for details). 
.1.4. Activation differences during visual stimulation across HRF models 

In order to test for whole-brain differences in activation, we com-
ared the human HRF, human HRF + TDD and dog HRF GLMs using
aired-sample t -tests (contrast checkerboard > visual baseline; explo-
ation and estimation analysis, step 5). Results revealed significant clus-
ers for all models. However, the analysis using the dog HRF was the
nly one that resulted in significant differences in activation both in
he V1 and bilateral temporal regions (dog HRF > human HRF); the
uman HRF + TDD increased activation only in a caudal V1 region (hu-
an HRF + TDD > human HRF; human HRF + TDD > dog HRF). In sum,

he human HRF revealed to be the least sensitive model (see Fig. 5 B,
able 1 for details). 

.2. Validation: Face processing experiment (experiment 2) 

Next, we validated our novel results in an independent data set and
ompared all three HRF models. 

.2.1. FIR model and comparison of HRF model fits 

Visual inspection of the average activation time course based on the
IR model (validation analysis, step 4) confirmed the results of the ex-
loratory and estimation analysis, as it again revealed an earlier BOLD
ignal peak (see Fig. 4 B). In line with the exploratory results, comparing
he average HRF model fits (i.e., R 

2 -statistics) for both runs separately
validation analysis, step 5) revealed that the dog HRF resulted in an
 

2 eight times higher for the first run (human HRF: mean 𝑅 

2 
𝑟𝑢𝑛 1 = 0.06,

D = 0.11; dog HRF: mean 𝑅 

2 
𝑟𝑢𝑛 1 = 0.5, SD = 0.31) and by almost three

imes for the second run (human HRF: mean 𝑅 

2 
𝑟𝑢𝑛 2 = 0.15, SD = 0.22;

og HRF: mean 𝑅 

2 
𝑟𝑢𝑛 2 = 0.44, SD = 0.31). Again, the Wilcoxon signed

anks tests indicated that the dog HRF model fit was significantly higher
han the human HRF in both runs (Run 1: z = 100, p = 0.001; Run 2:
 = 67, p = 0.012), confirming the advantage of using the tailored dog
RF in a data set independent of the dog HRF estimation. 

.2.2. Visual activation during visual stimulation across HRF models 

In line with the results from the exploratory and estimation analy-
is, modelling the dog HRF resulted in the highest number of activated
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Fig. 4. Visual comparison reveals an earlier peak of the BOLD signal in dogs 
as when modelled using the canonical human haemodynamic response function 
(HRF) for both independent data sets leading to the estimation of a tailored dog 
HRF. After calculating the finite impulse response (FIR) models, we extracted 
individual response estimates from the maximal response in primary visual cor- 
tex (V1) using coordinates from (A) the standard human HRF for the flickering 
checkerboard experiment (exploration and estimation analysis, step 5; x = -1, 
y = -29, z = 16, 4 mm) and (B) the standard human HRF along with time and 
dispersion derivatives for the face processing experiment (validation analysis, 
step 4; x = -1, y = -29, z = 19, 4 mm). Based on the extracted data, we cal- 
culated the averaged BOLD signal time course for the visual stimulation across 
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lusters with cluster sizes increasing twelve times in comparison to the
odel including the human HRF + TDD. Furthermore, the dog HRF was

he only model that detected activation beyond the V1 in bilateral tem-
oral regions, while none of these withstood the cluster threshold cor-
ection when modelling the human HRF (see Table 2 , Fig. 7 A for details;
alidation analysis, step 5). Performing paired-sample t -tests between
og HRF, human HRF and human HRF + TDD (validation analysis, step
) resulted in no significant differences with the initial strict threshold,
ut lowering the threshold to p = 0.005 uncorrected indicated that using
he dog HRF improved the sensitivity to detect visual processing areas
see Table 2 , Fig. 7 B for details), thus confirming the exploratory results.

. Discussion 

The aim of this study was to explore whether the typically used hu-
an haemodynamic response function (HRF) fits the average BOLD sig-
al in dogs and whether detection power for canine neuroimaging data
an be improved using a tailored dog HRF. Our results indicate that the
uman HRF does not fit the average BOLD signal in dogs. We provide
nitial evidence that the average time course of the V1 BOLD signal in
ogs peaks 2-3 s earlier than the human HRF and that the model fit for
he primary visual cortex (V1) can be significantly improved using a tai-
ored dog HRF. Expanding to whole-brain activation, the dog HRF again
esulted in increased detection power for the dog HRF. 

We used two independent visual experiments serving as exploration
nd estimation analysis (flickering checkerboard experiment, experi-
ent 1) and independent validation sets (face processing experiment,

xperiment 2). We estimated a tailored dog HRF based on the empirical
ata from experiment 1, since V1 BOLD signal indicated an earlier peak
ompared to the human HRF. Following this, we were able to confirm
he earlier peak when investigating the V1 BOLD signal in the indepen-
ent experiment 2. Further, the model fit (i.e., R 

2 -statistics) for the V1
ignificantly improved (and almost doubled) in experiment 1 and were
etween eight (run 1) and almost three (run 2) times higher in experi-
ent 2 when comparing to the human HRF. Expanding to whole-brain

omparisons, our results provide evidence that the human HRF, com-
ared to the tailored dog HRF, resulted in significantly less activation
eing detected. Fourth, adding time and dispersion derivatives (TDD)
ed to significantly increased activation in both experiments, but only
ithin occipital areas. For experiment 1, the human HRF + TDD even

ed to increased V1 signal compared to the dog HRF. Overall, however,
he human HRF + TDD was less sensitive in detecting secondary visual
reas resulting in fewer significant clusters, while the dog HRF detected
oth primary and secondary visual areas during both experiments. These
re important findings when considering the small sample sizes in most
anine neuroimaging studies. In contrast to human studies, it is more
ifficult to increase power by increasing the sample size, primarily due
o limited availability of canine participants and extensive dog train-
ng prior to MR-scanning. Thus, increasing the model fit of the HRF to
he average BOLD signal time course is an important alternative tool to
urther increase the power and therefore increase the reproducibility of
uture studies. 

Our findings are consistent with research in rodents, which suggested
hat using the human HRF degrades the model fit and, thus, the over-
ll detection performance ( Lambers et al., 2020 ). As in our sample,
rials and dogs for both (A) the flickering checkerboard experiment and (B) the 
ace processing experiment (both runs separately). The dog HRF was estimated 
ased on the average BOLD signal time course from the flickering checkerboard 
xperiment (exploration and estimation analysis, step 2), while the face pro- 
essing experiment served as an independent test data set to validate the results 
erived from the exploration and estimation analysis. The tailored dog HRF and 
he human HRF are plotted in addition to the extracted the BOLD signal time 
ourse to display the fit of the HRF models for both experiments. For illustration 
urposes, the dog and human HRF’s were scaled by the parameter estimates (ar- 
itrary units, a.u.) from the respective GLMs. SEM, standard error of the mean. 
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Fig. 5. Flickering checkerboard experiment: Comparison of brain activation across haemodynamic response functions (HRF) illustrates increased detection perfor- 
mance using a tailored dog HRF in both primary and higher order visual processing areas (exploratory and estimation analysis). Results are displayed at p < 0.05, 
FWE-corrected at cluster-level, and using a cluster-defining threshold of p < .001 (see Table 1 ), overlaid onto the mean structural image. Coordinates refer to the 
canine breed-averaged atlas ( Nitzsche et al., 2019 ). The first axial plane (A, first row, left) shows the anatomical locations caudal (C), rostral (R), and left hemisphere 
(LH); all axial planes displayed have the same orientation. The sagittal plane displays the cut coordinates and the anatomical locations dorsal (D), ventral (V). (A) 
Group-based activation for visual stimulation > baseline (one-sample t -tests) indicate that the analysis using the dog HRF shows the highest sensitivity for the canine 
neuroimaging data, with the analysis using the human HRF resulting in smaller activation clusters, and the analysis using the human HRF combined with time and 
dispersion derivatives resulting in even smaller activation clusters. (B) Comparisons of visual stimulation > visual baseline contrasts between all three HRF models 
(paired-sample t -tests) resulted in similar significant activation changes in the occipital lobe for the human HRF and time and dispersion (TDD) model in contrast to 
both the human and dog HRF). Comparing the human HRF and dog HRF revealed stronger activation in the primary visual cortex and temporal regions for the dog 
HRF compared to the dog HRF and activation in the insular cortex for the reverse contrast (not depicted, see Table 1 for details). 
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ambers and colleagues (2020) observed an earlier peak of the aver-
ge BOLD signal in rats, proposing differences in brain and vessel size,
maller distances within the brain or a higher capillary and venous flow
elocity as potential reasons for the observed patterns (see also De Zwart
t al., 2005 ; Silva et al., 2007 ). Absolute brain sizes cannot sufficiently
xplain why the human HRF fits the average BOLD signal in dogs. Al-
hough dog brains have a smaller absolute size than human and, on aver-
ge, macaque brains (e.g., DeFelipe, 2011 ; Yáñez et al., 2005 ), the dog
reeds in our sample seem to have a similar size as rhesus macaques
 Horschler et al., 2019 ). However, relative size (brain size/body weight)
ould potentially explain our findings, since the dog brains in our sample
just as rodent brains) seem to have a smaller relative brain size than hu-
ans and rhesus macaques (e.g. Baumann et al., 2010 ; Logothetis et al.,
001 for average body weight in macaques; Roth & Dicke, 2005 for re-
iew). Although evolutionary relationship also seems to correlate with
he human HRF across species, underlying neurovascular mechanisms
emain somewhat unclear. Additionally, skull shapes and sizes also vary
ithin dog species (i.e., across different breeds), resulting in substan-

ial variance in underlying neuroanatomy in dogs ( Hecht et al., 2019 ;
orschler et al., 2019 ; Schoenebeck & Ostrander, 2013 ). Since our sam-
le was rather homogenous (70% border collies; all mesocephalic skull
hapes) and small, we did not have enough variance to test for poten-
ial differences between breeds, skull shapes or sizes. Further, the hu-
an HRF parameters provided by SPM have been estimated based on
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Fig. 6. Increasing the detection power by using the tailored dog haemodynamic response function (HRF) in the flickering checkerboard experiment allows detailed 
description of primary and higher-order visual processing areas. (A) Visual stimulation against baseline elicited activation in a large region of the occipital lobe 
peaking at the rostral occipital lobe expanding to the caudal parietal lobe and bilateral dorsal portions of the temporal lobe. In addition, activation in bilateral 
hippocampal areas increased in response to visual stimulation compared to baseline. Results are displayed at p < 0.05, FWE-corrected at cluster-level, and using 
a cluster-defining threshold of p < .001 (see Table 1 , section “dog HRF ”), plotted onto the mean structural image. Atlas maps, coordinates and the anatomical 
nomenclature refer to the canine breed-averaged atlas ( Nitzsche et al., 2019 ) and additional normalized labels from a single-dog based template ( Czeibert et al., 
2019 ). Images are accompanied with anatomical locations caudal (C), rostral (R), dorsal (D), ventral (V), left hemisphere (LH) and right hemisphere (RH). (B) For 
easier interpretation of the anatomical structures activated, blue-shaded outlines of anatomical regions are displayed together with contours of activated clusters 
shown in Panel A. 
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ata from a 1.5 Tesla (T) MR scanner ( Friston, Josephs, et al., 1998 ).
lthough it has never been tested, 3 T or higher field MR could poten-

ially influence BOLD signal measurements (i.e., increased sensitivity to
icrovasculature). Reviewing the published literature, dog fMRI labs
orking with unrestrained and fully awake dogs have so far used a 3 T
R scanner. Thus, in terms of magnetic field strength, our dog HRF

stimate should be comparable to other canine neuroimaging data. Ad-
itionally, differences in heart rate (i.e., Chang, Cunningham, & Glover,
009 ), breathing rate (i.e., Birn, Murphy, Handwerker, & Bandettini,
009 ), as well as the distance to draining veins (i.e., Bianciardi, Fuku-
aga, van Gelderen, de Zwart, & Duyn, 2011 ; Krings, Erberich, Roessler,
eul, & Thron, 1999 ; Turner, 2002 ) can also modulate the BOLD signal

ime course. In line with the observed earlier peak of the BOLD signal in
ogs, Manzo, Ootaki, Ootaki, Kamohara, & Fukamachi (2009) report a
igher heart rate in dogs (with a similar body weight as in our sample)
ompared to humans. Unfortunately, due to the lack of physiological
easurements, we cannot test the influence of heart and breathing rate,

r the distance to draining veins, in the present sample. Additionally,
esides body weight, heart rate measurements were also shown to cor-
elate with factors such as age and breed ( Hezzell, Humm, Dennis, Agee,
 Boswood, 2013 ). Here, we estimated the dog HRF based on dogs rang-

ng between 4–11 years ( Mdn = 8) covering a wide range of ages. Taken
ogether, the average BOLD signal might deviate from the tailored dog
RF across breeds and at different body weight. This could be accounted

or by adding time and dispersion derivatives to the dog HRF in future
tudies. 

Our results do not confirm earlier reports of a similar time course
f the average BOLD signal to the one in humans ( Berns et al., 2012 ).
nlike Berns et al. (2012) , our results suggest that the human HRF does
ot fit the average time course of the BOLD signal in dogs optimally.
owever, Berns et al. (2012) studied the subcortical caudate nucleus,
hile we focused on the cortical BOLD signal in dogs, extracting data

rom V1. Previous research in other species, i.e. humans showed that
he average BOLD signal time course differed between cortical and sub-
ortical regions ( Handwerker et al., 2004 ; Lewis, Setsompop, Rosen, &
olimeni, 2018 ). Thus, our findings do not necessarily contradict the re-
ults from Berns et al. (2012) but might be related to the different areas
nalysed, as well as their neural and vascular characteristics. 

While it is possible to accurately estimate HRF parameters from
lock designs ( Shan et al., 2014 ), studies investigating the shape of the
OLD signal time course typically employ an event-related design (i.e.,
riston, Jezzard, & Turner, 1994 ; Handwerker, Ollinger, & D’Esposito,
004 ; Lindquist, Meng Loh, Atlas, & Wager, 2009 ). A disadvantage of
xperiment 1 is the fixed on-off cycle (10 s): Dogs might have antic-
pated the next stimulus onset, and we might have missed a possible
OLD signal undershoot that might have continued into the next block
i.e., longer than the 10 s baseline) which altogether could have affected
ur observed BOLD signal shape. Nevertheless, we chose experiment 1
s for estimating the HRF because of the robustness of the design itself,
nd because of the salient visual stimulation (flickering checkerboard).
uch stimulation is typically used to elicit solid activation in our V1
arget region (i.e., Moradi et al., 2003 ; Sladky et al., 2011 for exam-
les in humans). Thus this allowed us to achieve increased detection
ower as well as a reliable dog HRF estimate. We then validated our
esults by using the event-related face processing experiment (experi-
ent 2; jittered baseline). This confirmed our initial results, resulting

gain in a better model fit for the dog HRF compared to the human
RF. In addition, we estimated HRF parameters based on the face pro-
essing experiment resulting in similar results and numerically almost
dentical model fits. Although flipping the exploration and validation
xperiments lead to comparable results, future research should employ
lock and event-related designs with a jittered resting state period, com-
ining the strengths of both experiments (i.e., short events of flickering
heckerboards with jittered baseline). 

Exploring their visual environment, humans and non-human animals
erform rapid eye movements (saccades) ranging from small to larger
ovements depending on the visual stimulus. These saccades could have

nfluenced the observed V1 BOLD signal time course. First, if the dogs
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Fig. 7. Face processing experiment: Comparison of brain activation in an independent data set confirms increased detection performance using a tailored dog 
haemodynamic response function (HRF) compared to other HRF models (validation analysis). For display purposes results are displayed at p < .005 (for results at 
p < 0.05, FWE-corrected at cluster-level, and a cluster-defining threshold of p < .001 see Table 2 ) on the mean structural image. Coordinates refer to the canine 
breed-averaged atlas ( Nitzsche et al., 2019 ). The first axial plane (A, first row, left) shows the anatomical locations caudal (C), rostral (R) and left hemisphere (LH); all 
axial planes displayed have the same orientation. The sagittal plane displays the cut coordinates and the anatomical locations dorsal (D), ventral (V). (A) Group-based 
activation for visual stimulation > baseline (one sample t -tests) indicate that the human HRF results in almost no activation, the human HRF combined with time 
and dispersion derivatives (TDD) results in bigger activation clusters and again that the dog HRF shows the highest sensitivity for the canine neuroimaging data. (B) 
Group comparisons of visual stimulation > visual baseline contrasts between all three HRF models. Group-based activation (paired-sample t -tests) resulted in trends 
of activation changes in temporal regions for the dog HRF in comparison to both the human HRF and human HRF + TDD model (see Table 2 for detailed results). 
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azed away from the visual stimulus, the V1 BOLD signal would have
ecreased. We did not record the dogs’ eye gaze since the dogs were
ot trained to perform the eye tracker calibration inside the MR scanner
for information on the extensive training procedure for a setting out-
ide the scanner please see Karl, Boch, Virányi, Lamm, & Huber, 2019 ).
owever, we monitored their eye movements via a camera from an
ye tracker throughout the data collection to ensure that the dogs were
wake and generally attending to the task. If the dog always looked away
rom the MR screen (looking to the side, top or bottom for a long amount
f time) we would have stopped the data collection. In addition, we
hose experiment 1 as exploration and estimation data set, because the
ickering checkerboard expanded over the entire MR screen and the MR
creen itself covered the scanner bore. This made it almost impossible
o look away from the visual stimulation. However, frequent saccades
cross a visual stimulus can also lead to a decreased V1 signal (saccadic
uppression; i.e., Sylvester, Haynes, & Rees, 2005 or Wurtz, 2008 for re-
iew) or a pre-saccadic activity increase (~100 ms, so far detected with
ingle cell recordings in monkeys, i.e., Supèr, Van Der Togt, Spekreijse,
 Lamme, 2004). Especially with the flickering checkerboard experi-
ent, the dogs typically did not make frequent saccades since there is no
oving object or agent present that they could follow with their gaze.
he face processing experiment contained dynamic stimuli (i.e., mor-
hed faces), but we positioned the visual stimuli in the centre of the MR
creen and the dogs’ eye field with a size of 500 × 500 pixels to ensure
hat the dogs can observe the entire stimulus without performing fre-
uent eye movements. Future canine neuroimaging studies using visual
timuli could also explore the possibility to incorporate an eye tracking
rotocol to record eye gaze data to further strengthen their results. 

Overall, our findings provide first evidence that the human HRF in
he visual cortex does not optimally fit the HRF observed in dogs. De-
pite being based on two independent experiments allowing for cross-
alidation, this evidence should be treated as preliminary, awaiting in-
ependent validation in other samples, experimental paradigms, and
rain regions. We hope that our approach will encourage future re-
earch to test the reproducibility and generalizability of our findings,
nd to explore whether this could help to increase model fit and de-
ection power in their own canine fMRI datasets. For this reason, we
dopted the established and recommended ( Carp, 2012b ; Nichols et al.,
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017 ; Poldrack et al., 2008 ) standards from human neuroimaging anal-
ses, provided a detailed description of our workflow and parameters,
nd made our imaging data and code openly available. Using a simple
ut salient sensory stimulation experiment also allowed quality assess-
ent of our developed processing pipeline and helped us validate fu-

ure changes in our pipeline, preventing potentially biased decisions.
dditionally, a short (visual) localizer experiment can be used for dog

raining and getting dogs accustomed to the experimental setup. 
Transparent reporting also allows us to build on previous re-

earch and facilitates the comparison of results. Based on previous
esearch (e.g., Aguirre et al., 2007 ; Langley & Grünbaum, 1890 ;
arquis, 1934 ; Uemura, 2015 ; Willis, Quinn, McDonell, Gati, Parent,

t al., 2001 ; Willis, Quinn, McDonell, Gati, Partlow, et al., 2001 ; Wing
 Smith, 1942 ) we are certain about the location of the V1, but less

s known about other higher-order visual association areas. Similar to
he human and rhesus macaque visual system (e.g., Orban, Van Essen,
 Vanduffel, 2004 ; Tootell, Tsao, & Vanduffel, 2003 for comparative

eviews), we found activation within the dorsal visual stream, extend-
ng from the occipital lobe to the caudal parietal lobe and the ventral
tream, and including bilateral regions in the temporal lobes, bilateral
ippocampus and caudal thalamus. We did not find significant activa-
ion in the lateral geniculate body (LGB); (1) regarding the small size
f the region, detection might require smaller voxel sizes or (2) differ-
nces in individual anatomy might have led to anatomical imprecision,
tlases based on larger sample size ( Nitzsche et al. 2019 : based on N = 16
ogs) could help disentangle this question. Unfortunately, there is still
o agreement on a shared template space; publicly available templates
 Czeibert et al., 2019 ; Datta et al., 2012 ; Liu et al., 2020 ; Nitzsche et al.,
019 ) are not in the same space and vary in orientation and origin, thus
oordinates from one template cannot be applied to the other. Taken
ogether, these findings can be a next step to further investigate the vi-
ual system for dogs, hopefully aiding future investigations of the visual
ystem in dogs or studies focusing on visual paradigms (e.g., face pro-
essing Cuaya et al., 2016 ; Dilks et al., 2015 ; Hernández-Pérez et al.,
018 ; Szabó et al., 2020 ; Thompkins et al., 2018 ). 

.1. Conclusions 

We present first evidence that the average visual-cortical BOLD sig-
al in dogs peaks earlier than the human HRF model. Consequently, the
ignificantly lower model fit suggests that the analysis of canine neu-
oimaging data using the human HRF leads to loss of power that cannot
e accounted for by adding time and dispersion derivatives. We provide
 first estimate of the cortical dog HRF resulting in significant activation
ncrease in comparison to the human HRF and validated our results us-
ng an independent task. We hope that our findings spark new research
hat might challenge or add to our results. To increase transparency, we
pplied open-science practices throughout, and hope this will motivate
nd facilitate future investigations by other labs, leading to a joint effort
o improve detection power in canine neuroimaging research. 
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